Recent years have witnessed tremendously improved efficiency of Automated Machine Learning (AutoML), especially Automated Deep Learning (AutoDL) systems, but recent work focuses on tabular, image, or NLP tasks. So far, little attention has been paid to general AutoDL frameworks for time series forecasting, despite the enormous success in applying different novel architectures to such tasks. In this paper, we propose an efficient approach for the joint optimization of neural architecture and hyperparameters of the entire data processing pipeline for time series forecasting. In contrast to common NAS search spaces, we designed a novel neural architecture search space covering various state-of-the-art architectures, allowing for an efficient macro-search over different DL approaches. To efficiently search in such a large configuration space, we use Bayesian optimization with multi-fidelity optimization. We empirically study several different budget types enabling efficient multi-fidelity optimization on different forecasting datasets. Furthermore, we compared our resulting system, dubbed \system, against several established baselines and show that it significantly outperforms all of them across several datasets.
翻译:近年来,自动机器学习系统(自动学习系统)的效率大大提高,特别是自动深层学习系统(自动学习系统)的效率大大提高,但最近的工作侧重于表格、图像或NLP任务。迄今为止,尽管在应用不同新结构来完成时间序列预测方面取得了巨大成功,但很少注意一般AutoDL框架的时间序列预测。在本文件中,我们提出了联合优化神经结构和整个数据处理管道以进行时间序列预报的有效方法。与共同的NAS搜索空间不同,我们设计了一个新颖的神经结构搜索空间,涵盖各种最先进的结构,允许对不同的DL方法进行有效的宏观研究。为了在如此大的配置空间进行高效的搜索,我们利用多种纤维优化的巴伊斯优化。我们实验性地研究不同预算类型,使不同预报数据集能够高效地实现多纤维优化。此外,我们比较了我们由此产生的系统(调制)与几个既定的基线相比,并显示它大大超越了多个数据集的所有系统。