Algorithms are unavoidable in our social lives, yet often perpetuate social injustices. The popular means of addressing this is through algorithmic reformism: fine-tuning algorithms themselves to be more fair, accountable, and transparent. However, reformism fails to curtail algorithmic injustice because it ignores the power structure surrounding algorithms. Heeding calls from critical algorithm studies, I employ a framework developed by Erik Olin Wright to examine the configuration of power surrounding algorithmic systems in society (Algorithmic Activity). Algorithmic Activity is unjust because it is dominated by economic power. To create socially just Algorithmic Activity, the power configuration must instead empower end users. I explore Wright's symbiotic, interstitial, and raptural transformations in the context of just Algorithmic Activity. My vision for social justice in algorithmic systems requires a continuous (re)evaluation of how power can be transformed in light of current structure, social theories, evolving methodologies, and one's relationship to power itself.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年9月26日
Arxiv
33+阅读 · 2021年12月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
17+阅读 · 2023年9月26日
Arxiv
33+阅读 · 2021年12月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员