This paper presents a novel self-supervised learning method for handling conversational documents consisting of transcribed text of human-to-human conversations. One of the key technologies for understanding conversational documents is utterance-level sequential labeling, where labels are estimated from the documents in an utterance-by-utterance manner. The main issue with utterance-level sequential labeling is the difficulty of collecting labeled conversational documents, as manual annotations are very costly. To deal with this issue, we propose large-context conversational representation learning (LC-CRL), a self-supervised learning method specialized for conversational documents. A self-supervised learning task in LC-CRL involves the estimation of an utterance using all the surrounding utterances based on large-context language modeling. In this way, LC-CRL enables us to effectively utilize unlabeled conversational documents and thereby enhances the utterance-level sequential labeling. The results of experiments on scene segmentation tasks using contact center conversational datasets demonstrate the effectiveness of the proposed method.
翻译:本文展示了一种由人与人之间对话转录文本组成的处理谈话文件的新颖的自我监督的学习方法。 理解谈话文件的关键技术之一是发音级顺序标签,其中标签以逐字逐句的方式从文件上估算。 发音级顺序标签的主要问题是难以收集标签式谈话文件,因为人工说明非常昂贵。 要处理这一问题,我们提议了大型文本对话代表学习(LC-CRL),这是一种专门用于谈话文件的自监控学习方法。 LC- CRL 的自我监督学习任务涉及使用基于大通文语言建模的所有周围语句来估计发音。 这样, LC- CRL 使我们能够有效利用无标签式谈话文件,从而增强语音级顺序标签。 使用接触中心对话数据集进行现场分割任务实验的结果显示了拟议方法的有效性 。