In this paper, we explore using runtime verification to design safe cyber-physical systems (CPS). We build upon the Simplex Architecture, where control authority may switch from an unverified and potentially unsafe advanced controller to a backup baseline controller in order to maintain system safety. New to our approach, we remove the requirement that the baseline controller is statically verified. This is important as there are many types of powerful control techniques -- model-predictive control, rapidly-exploring random trees and neural network controllers -- that often work well in practice, but are difficult to statically prove correct, and therefore could not be used before as baseline controllers. We prove that, through more extensive runtime checks, such an approach can still guarantee safety. We call this approach the Black-Box Simplex Architecture, as both high-level controllers are treated as black boxes. We present case studies where model-predictive control provides safety for multi-robot coordination, and neural networks provably prevent collisions for groups of F-16 aircraft, despite occasionally outputting unsafe actions.
翻译:在本文中,我们探索使用运行时间核查来设计安全的网络物理系统(CPS ) 。 我们以Slaimx 结构为基础, 控制机构可以从一个未经核查和可能不安全的先进控制器转换为后备基线控制器, 以维护系统安全。 我们从新着手, 取消了基准控制器必须静态核查的要求。 这一点很重要, 因为有许多类型的强力控制技术 -- -- 模型预测控制、 快速勘探随机树木和神经网络控制器 -- -- 在实践中通常运作良好,但很难静态地证明正确,因此在以前无法用作基线控制器。 我们证明,通过更广泛的运行时间检查, 这种方法仍然可以保证安全。 我们称这个方法为Black-Box 简单控制器, 因为这两个高级控制器都被当作黑盒处理。 我们的案例研究是, 模型预测控制为多机器人协调提供安全, 神经网络可以防止F-16飞机群发生碰撞, 尽管偶尔输出不安全的行动。