Given an undirected $n$-vertex planar graph $G=(V,E,\omega)$ with non-negative edge weight function $\omega:E\rightarrow \mathbb R$ and given an assigned label to each vertex, a vertex-labeled distance oracle is a data structure which for any query consisting of a vertex $u$ and a label $\lambda$ reports the shortest path distance from $u$ to the nearest vertex with label $\lambda$. We show that if there is a distance oracle for undirected $n$-vertex planar graphs with non-negative edge weights using $s(n)$ space and with query time $q(n)$, then there is a vertex-labeled distance oracle with $\tilde{O}(s(n))$ space and $\tilde{O}(q(n))$ query time. Using the state-of-the-art distance oracle of Long and Pettie, our construction produces a vertex-labeled distance oracle using $n^{1+o(1)}$ space and query time $\tilde O(1)$ at one extreme, $\tilde O(n)$ space and $n^{o(1)}$ query time at the other extreme, as well as such oracles for the full tradeoff between space and query time obtained in their paper. This is the first non-trivial exact vertex-labeled distance oracle for planar graphs and, to our knowledge, for any interesting graph class other than trees.


翻译:G=( V, E,\ omega) 的未定向美元顶部平面图 $G=( V, E,\ omega) $( 美元), 具有非负边缘重量的美元 $\ omega: E\rightrow\ mathbb R$, 并给每个顶面图给一个指定标签, 顶层贴标签的距离是一个数据结构, 由顶层$( 美元) 和标签$( lambda) 构成的任何查询, 由顶层$( 美元) 和 美元( O) 和 美元( q( n) 美元) 来报告最接近的顶部距离。 我们显示, 如果有非定向的美元顶层平面平面平面平面平面平面图, 使用美元空间平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
84+阅读 · 2020年12月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Sparsity Awareness in Distributed Computations
Arxiv
0+阅读 · 2021年11月23日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
On Sparsity Awareness in Distributed Computations
Arxiv
0+阅读 · 2021年11月23日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员