Given an undirected $n$-vertex planar graph $G=(V,E,\omega)$ with non-negative edge weight function $\omega:E\rightarrow \mathbb R$ and given an assigned label to each vertex, a vertex-labeled distance oracle is a data structure which for any query consisting of a vertex $u$ and a label $\lambda$ reports the shortest path distance from $u$ to the nearest vertex with label $\lambda$. We show that if there is a distance oracle for undirected $n$-vertex planar graphs with non-negative edge weights using $s(n)$ space and with query time $q(n)$, then there is a vertex-labeled distance oracle with $\tilde{O}(s(n))$ space and $\tilde{O}(q(n))$ query time. Using the state-of-the-art distance oracle of Long and Pettie, our construction produces a vertex-labeled distance oracle using $n^{1+o(1)}$ space and query time $\tilde O(1)$ at one extreme, $\tilde O(n)$ space and $n^{o(1)}$ query time at the other extreme, as well as such oracles for the full tradeoff between space and query time obtained in their paper. This is the first non-trivial exact vertex-labeled distance oracle for planar graphs and, to our knowledge, for any interesting graph class other than trees.
翻译:G=( V, E,\ omega) 的未定向美元顶部平面图 $G=( V, E,\ omega) $( 美元), 具有非负边缘重量的美元 $\ omega: E\rightrow\ mathbb R$, 并给每个顶面图给一个指定标签, 顶层贴标签的距离是一个数据结构, 由顶层$( 美元) 和标签$( lambda) 构成的任何查询, 由顶层$( 美元) 和 美元( O) 和 美元( q( n) 美元) 来报告最接近的顶部距离。 我们显示, 如果有非定向的美元顶层平面平面平面平面平面平面图, 使用美元空间平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。