For integers $d \geq 2$ and $k \geq d+1$, a $k$-hole in a set $S$ of points in general position in $\mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K \subseteq \mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$. We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d \geq 2$ and $k\geq d+1$, the number $EH_{d,k}^K(n)$ is at least $\Omega(n^d)$. For some small holes, we even determine the leading constant $\lim_{n \to \infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $\lim_{n \to \infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari (2019). In the plane, we show that the constant $\lim_{n \to \infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k \geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche (2015) and by the authors (2020).
翻译:对于整数 $\ geq 2 美元 和 $k\ geq d+ 美元, 对于整数体 $K\ geq 2 美元 和 $k 美元 美元 美元 美元, 一个以美元计价的美元洞, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价, 以美元计价。