In this paper, we diagnose deep neural networks for 3D point cloud processing to explore utilities of different intermediate-layer network architectures. We propose a number of hypotheses on the effects of specific intermediate-layer network architectures on the representation capacity of DNNs. In order to prove the hypotheses, we design five metrics to diagnose various types of DNNs from the following perspectives, information discarding, information concentration, rotation robustness, adversarial robustness, and neighborhood inconsistency. We conduct comparative studies based on such metrics to verify the hypotheses. We further use the verified hypotheses to revise intermediate-layer architectures of existing DNNs and improve their utilities. Experiments demonstrate the effectiveness of our method.
翻译:在本文中,我们分析三维点云处理的深神经网络,以探索不同中间层网络结构的公用设施。我们提出了若干关于特定中间层网络结构对 DNN 代表能力的影响的假设。为了证明这些假设,我们设计了五个衡量标准,从以下角度来诊断各类DN, 信息弃置、信息集中、旋转强度、对抗性坚固度和邻里不一。我们根据这些衡量标准进行了比较研究,以核实这些假设。我们进一步利用经核实的假设来修改现有的DNN 的中间层结构并改进它们的公用设施。实验显示了我们方法的有效性。