Surface reconstruction from a set of scattered points, or a point cloud, has many applications ranging from computer graphics to remote sensing. We present a new method for this task that produces an implicit surface (zero-level set) approximation for an oriented point cloud using only information about (approximate) normals to the surface. The technique exploits the fundamental result from vector calculus that the normals to an implicit surface are curl-free. By using a curl-free radial basis function (RBF) interpolation of the normals, we can extract a potential for the vector field whose zero-level surface approximates the point cloud. We use curl-free RBFs based on polyharmonic splines for this task, since they are free of any shape or support parameters. Furthermore, to make this technique efficient and able to better represent local sharp features, we combine it with a partition of unity (PU) method. The result is the curl-free partition of unity (CFPU) method. We show how CFPU can be adapted to enforce exact interpolation of a point cloud and can be regularized to handle noise in both the normal vectors and the point positions. Numerical results are presented that demonstrate how the method converges for a known surface as the sampling density increases, how regularization handles noisy data, and how the method performs on various problems found in the literature.
翻译:从一组分散点或点云进行表面重建时,有许多应用,从计算机图形到遥感。我们为这项任务提出了一种新的方法,它只利用关于(近距离)正常到表面的信息,为定向点云提供隐含表面(零水平)近似近似值。技术利用了矢量计算法的基本结果,即正常到隐含表面没有卷轴。通过使用无曲线的正常线基(RBF)干涉功能,我们可以为零水平表面接近点云的矢量场提取一种潜力。我们使用基于多声调样样样条线的无卷轴RBF为此项任务提供一种隐含表面(零水平)近似值近近似值近似值的近似值。此外,技术利用了矢量计算法的基本结果,使正常到的表面没有曲线,我们把它与统一(PU)方法的分隔法结合起来。我们展示了CFPU可如何调整成一个精确的圆点云层云际图,并且可以固定地用多调的线条纹RBFFFFF,因为它们没有任何形状或支持参数。此外,为了显示正常的温度的矢量处理结果如何显示正常的矢量处理方式。