Single index models provide an effective dimension reduction tool in regression, especially for high dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models where metric space-valued random object responses are coupled with multivariate Euclidean predictors. The responses in this regression model include complex, non-Euclidean data, including covariance matrices, graph Laplacians of networks, and univariate probability distribution functions among other complex objects that lie in abstract metric spaces. Fr\'echet regression has provided an approach for modeling the conditional mean of such random objects given multivariate Euclidean vectors, but it does not provide for regression parameters such as slopes or intercepts, since the metric space-valued responses are not amenable to linear operations. We show here that for the case of multivariate Euclidean predictors, the parameters that define a single index and associated projection vector can be used to substitute for the inherent absence of parameters in Fr\'echet regression. Specifically, we derive the asymptotic consistency of suitable estimates of these parameters subject to an identifiability condition. Consistent estimation of the link function of the single index Fr\'echet regression model is obtained through local Fr\'echet regression. We demonstrate the finite sample performance of estimation for the proposed single index Fr\'echet regression model through simulation studies, including the special cases of probability distributions and graph adjacency matrices. The method is also illustrated for resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.
翻译:单一指数模型在回归中提供了一个有效的维度减少工具, 特别是对于高维度数据来说, 通过在方向矢量上投射一个普通多变预测器, 从而在回归模型中提供一个有效的维度减少工具。 我们为回归模型提出了一个新型的单一指数模型, 该模型中, 空间估价的随机对象的参数与多变 Euclidean 预测器相配合。 这个回归模型中的反应包括复杂、 非欧cliidean 数据, 包括共变矩阵, 网络的图形 Laplacian 预测器, 以及其它位于抽象的复杂天体。 Fr\'echet 回归提供了一个方法, 用于模拟具有多变异性 Euclidean 矢量的随机物体的有条件值值值值值。 但是, 它没有提供空间价值随机随机随机随机的随机随机物体反应模型参数, 如斜度或拦截等, 因为测量空间价值的响应不适于线性操作。 我们在这里显示, 确定单一模型的指数和相关矢量值的参数的参数的内在值的精确性估算值 。 我们通过这些参数的精确度的精确度的精确性估算, 通过这些参数的精确性模型的精确性模型的精确性研究, 也是通过这些参数的精确性能的精确性能的精确性能的精确性能的精确性估算。