Estimation of the mean vector and covariance matrix is of central importance in the analysis of multivariate data. In the framework of generalized linear models, usually the variances are certain functions of the means with the normal distribution being an exception. We study some implications of functional relationships between covariance and the mean by focusing on the maximum likelihood and Bayesian estimation of the mean-covariance under the joint constraint $\bm{\Sigma}\bm{\mu} = \bm{\mu}$ for a multivariate normal distribution. A novel structured covariance is proposed through reparameterization of the spectral decomposition of $\bm{\Sigma}$ involving its eigenvalues and $\bm{\mu}$. This is designed to address the challenging issue of positive-definiteness and to reduce the number of covariance parameters from quadratic to linear function of the dimension. We propose a fast (noniterative) method for approximating the maximum likelihood estimator by maximizing a lower bound for the profile likelihood function, which is concave. We use normal and inverse gamma priors on the mean and eigenvalues, and approximate the maximum aposteriori estimators by both MH within Gibbs sampling and a faster iterative method. A simulation study shows good performance of our estimators.
翻译:对平均矢量和共变矩阵的估算对于分析多变量数据至关重要。在通用线性模型的框架内,差异通常是手段的某些功能,正常分布是一个例外。我们研究共变和平均值之间功能关系的某些影响,重点是最大可能性,巴伊西亚估计在联合制约$\bm=Sigma=bm=bm=m=mu}下的平均差值,用于多变量正常分布。通过重新校准美元和美元等值的光谱分解功能,提出了新的结构化共变法。我们使用这种方法的目的是解决正-确定性这一具有挑战性的问题,并将共变参数从四边形到维度的线性函数的数量减少。我们提出一种快速(非平面)方法,通过尽可能降低剖面可能性功能的下限来估计最大的可能性。 光谱性分光分解将$\bm=Sigma}$的光谱分解值与正常分布值和美元等值的平均值。我们使用平流和前方平流率方法来显示我们正常和正比和前方平流性方法的准确性。