Clinical adoption of personalized virtual heart simulations faces challenges in model personalization and expensive computation. While an ideal solution is an efficient neural surrogate that at the same time is personalized to an individual subject, the state-of-the-art is either concerned with personalizing an expensive simulation model, or learning an efficient yet generic surrogate. This paper presents a completely new concept to achieve personalized neural surrogates in a single coherent framework of meta-learning (metaPNS). Instead of learning a single neural surrogate, we pursue the process of learning a personalized neural surrogate using a small amount of context data from a subject, in a novel formulation of few-shot generative modeling underpinned by: 1) a set-conditioned neural surrogate for cardiac simulation that, conditioned on subject-specific context data, learns to generate query simulations not included in the context set, and 2) a meta-model of amortized variational inference that learns to condition the neural surrogate via simple feed-forward embedding of context data. As test time, metaPNS delivers a personalized neural surrogate by fast feed-forward embedding of a small and flexible number of data available from an individual, achieving -- for the first time -- personalization and surrogate construction for expensive simulations in one end-to-end learning framework. Synthetic and real-data experiments demonstrated that metaPNS was able to improve personalization and predictive accuracy in comparison to conventionally-optimized cardiac simulation models, at a fraction of computation.
翻译:临床采纳个性化虚拟心脏模拟在模型个性化和昂贵计算过程中面临挑战。理想的解决方案是高效神经代孕,同时将神经代孕个性化为个人主题,而最先进的神经代孕要么是将昂贵的模拟模型个性化,或者学习一个高效而通用的代孕。本文提出了一个全新的概念,在一个统一的元学习框架内实现个性化神经代孕(metaPNS),而不是学习一个单一神经代孕,我们继续学习一个个人化神经代孕的过程,利用一个主题的少量上下文数据学习一个个性化神经代孕,这是由几颗光线性化的基因代孕模型的新构思,其基础是:1)一个固定的神经代孕育型神经代孕模型,它以特定主题的背景数据为条件,学会在一个单一连贯的元性神经代代代孕框架中实现个性化神经代孕代孕的神经代孕假变变变变变,它学会通过简单的背景数据输入简单进化嵌入一个环境数据,一个测试时间,MetPNPNS级模型在个人模拟中将一个真实的精细化模型转换到一个个人缩化模型中,通过一个可变化的自我变化模型的缩化模型,通过一个用于个人变化模型的模型的缩化模型的缩化模型的缩缩化模型的模型,用来在一个小的缩化模型的模型的模型中进行一个自我变化模型,通过一个可变化模型的缩成。