Recent advances in multi-task peer prediction have greatly expanded our knowledge about the power of multi-task peer prediction mechanisms. Various mechanisms have been proposed in different settings to elicit different types of information. But we still lack understanding about when desirable mechanisms will exist for a multi-task peer prediction problem. In this work, we study the elicitability of multi-task peer prediction problems. We consider a designer who has certain knowledge about the underlying information structure and wants to elicit certain information from a group of participants. Our goal is to infer the possibility of having a desirable mechanism based on the primitives of the problem. Our contribution is twofold. First, we provide a characterization of the elicitable multi-task peer prediction problems, assuming that the designer only uses scoring mechanisms. Scoring mechanisms are the mechanisms that reward participants' reports for different tasks separately. The characterization uses a geometric approach based on the power diagram characterization in the single-task setting ([Lambert and Shoham, 2009, Frongillo and Witkowski, 2017]). For general mechanisms, we also give a necessary condition for a multi-task problem to be elicitable. Second, we consider the case when the designer aims to elicit some properties that are linear in the participant's posterior about the state of the world. We first show that in some cases, the designer basically can only elicit the posterior itself. We then look into the case when the designer aims to elicit the participants' posteriors. We give a necessary condition for the posterior to be elicitable. This condition implies that the mechanisms proposed by Kong and Schoenebeck are already the best we can hope for in their setting, in the sense that their mechanisms can solve any problem instance that can possibly be elicitable.
翻译:多任务同侪预测的最新进展极大地扩大了我们对多任务同侪预测机制的力量的了解。 我们在不同场合提出了各种机制,以获得不同类型的信息。 但我们仍然缺乏对何时会存在适合多任务同侪预测问题的机制的理解。 在这项工作中, 我们研究多任务同侪预测问题的可产生性。 我们认为, 设计者对一个参与者的基本信息结构有一定的了解, 并想从一个参与者群体获得某些信息。 我们的目标是推断是否有可能建立一个基于问题原始因素的适宜机制。 我们的贡献是双重的。 首先, 我们提供可生成的多任务同侪预测问题的特点, 假设设计者只使用评分机制。 分辨机制是奖励参与者报告不同任务的机制。 定性使用基于单一任务环境的强力图描述的几何方法( [Lambert and Shohammum, 2009, Frongillillilloill和Witkowski, 2017] 。 关于一般机制, 我们还给某些多任务同级同级预测机制提供了一种必要的条件。 当一个需要的同级的同级的同级预测者在第二个目标中显示时, 我们认为, 最能显示其直判的、直判的、直判的、直判的。 我们的、直判的、直判的、直判的、直立的。 我们的、直立的、直立的、直立的、直立的、直立的、直立的、直立的、直立的、直立的、直立的、直立的、直立的。