In the forensic studies of painting masterpieces, the analysis of the support is of major importance. For plain weave fabrics, the densities of vertical and horizontal threads are used as main features, while angle deviations from the vertical and horizontal axis are also of help. These features can be studied locally through the canvas. In this work, deep learning is proposed as a tool to perform these local densities and angle studies. We trained the model with samples from 36 paintings by Vel\'azquez, Rubens or Ribera, among others. The data preparation and augmentation are dealt with at a first stage of the pipeline. We then focus on the supervised segmentation of crossing points between threads. The U-Net with inception and Dice loss are presented as good choices for this task. Densities and angles are then estimated based on the segmented crossing points. We report test results of the analysis of a few canvases and a comparison with methods in the frequency domain, widely used in this problem. We concluded that this new approach succeeds in some cases where the frequency analysis tools fail, while improving the results in others. Besides, our proposal does not need the labeling of part of the to-be-processed image. As case studies, we apply this novel algorithm to the analysis of two pairs of canvases by Vel\'azquez and Murillo, to conclude that the fabrics used came from the same roll.


翻译:在绘画杰作的法证研究中,对支持的分析非常重要。对于平面编织布,垂直和水平线的密度被用作主要特征,而垂直和水平轴的角度偏差也是有用的。这些特征也可以通过画布在当地研究。在这项工作中,建议深思熟虑作为进行这些本地密度和角度研究的工具。我们用36幅画的样本对模型进行了培训,这些画来自Vel\'azquez、Rubens或Ribera,等等。数据编制和增强工作是在管道的第一阶段处理的。我们然后侧重于对线间交叉点的监管分解。带有起始和狄氏损失的U-Net是这项任务的好选择。然后,根据分层交叉点对密度和角度进行估算。我们报告对少数画的分析和与在这一问题中广泛使用的频率域方法的比较结果。我们的结论是,在一些情况下,如果频率分析工具失败,数据编制和增强,则在其他方面改进结果。此外,我们的提案不需要将“U-Net”和“Dice损失”作为这项任务的好选择。然后,我们的建议不需要将“VI-ral”结构分析的卷进行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员