Sequential data such as time series, video, or text can be challenging to analyse as the ordered structure gives rise to complex dependencies. At the heart of this is non-commutativity, in the sense that reordering the elements of a sequence can completely change its meaning. We use a classical mathematical object -- the tensor algebra -- to capture such dependencies. To address the innate computational complexity of high degree tensors, we use compositions of low-rank tensor projections. This yields modular and scalable building blocks for neural networks that give state-of-the-art performance on standard benchmarks such as multivariate time series classification and generative models for video.
翻译:时间序列、 视频或文字等序列数据可能具有分析挑战性, 因为定序结构导致复杂的依赖性。 关键是非组合性, 也就是说, 序列元素的重新排序可以完全改变其含义。 我们使用一个经典数学天体 -- -- 高温代数 -- -- 来捕捉这种依赖性。 为解决高度强的内在计算复杂性问题, 我们使用低度气压预测的构成。 这为神经网络生成模块和可缩放的构件, 使神经网络在多变时间序列分类和视频基因模型等标准基准上产生最先进的性能。