主题: Deep Learning on Knowledge Graph for Recommender System: A Survey

摘要: 最近的研究表明,知识图谱(KG)在提供有价值的外部知识以改进推荐系统(RS)方面是有效的。知识图谱能够编码连接两个对象和一个或多个相关属性的高阶关系。借助于新兴的GNN,可以从KG中提取对象特征和关系,这是成功推荐的一个重要因素。本文对基于GNN的知识感知深度推荐系统进行了综述。具体来说,我们讨论了最新的框架,重点是它们的核心组件,即图嵌入模块,以及它们如何解决实际的推荐问题,如可伸缩性、冷启动等。我们进一步总结了常用的基准数据集、评估指标以及开源代码。最后,我们对调查结果进行了总结,并提出了这一快速发展领域的潜在研究方向。

成为VIP会员查看完整内容
158

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
知识图谱嵌入(KGE):方法和应用的综述
专知
56+阅读 · 2019年8月25日
自然语言处理常识推理综述论文,60页pdf
专知
73+阅读 · 2019年4月4日
如何将知识图谱特征学习应用到推荐系统?
微软研究院AI头条
7+阅读 · 2018年6月5日
深度学习在推荐系统中的应用综述(最全)
七月在线实验室
17+阅读 · 2018年5月5日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
微信扫码咨询专知VIP会员