An alternating graph is a directed graph whose vertex set is partitioned into two classes, existential and universal. This forms the basic arena for a plethora of infinite duration two-player games where Player~$\square$ and~$\ocircle$ alternate in a turn-based sliding of a pebble along the arcs they control. We study alternating strongly-connectedness as a generalization of strongly-connectedness in directed graphs, aiming at providing a linear time decomposition and a sound structural graph characterization. For this a refined notion of alternating reachability is introduced: Player~$\square$ attempts to reach vertices without leaving a prescribed subset of the vertices, while Player~$\ocircle$ works against. This is named \emph{safe alternating reachability}. It is shown that every arena uniquely decomposes into safe alternating strongly-connected components where Player~$\square$ can visit each vertex within a given component infinitely often, without having to ever leave out the component itself. Our main result is a linear time algorithm for computing this alternating graph decomposition. Both the underlying graph structures and the algorithm generalize the classical decomposition of a directed graph into strongly-connected components. The algorithm builds on a linear time generalization of the depth-first search on alternation, taking inspiration from Tarjan 1972 machinery. Our theory has direct applications in solving well-known infinite duration pebble games faster. Dinneen and Khoussainov showed in 1999 that deciding a given Update Game costs $O(mn)$ time, where $n$ is the number of vertices and $m$ is that of arcs. We solve the task in $\Theta(m+n)$ linear~time. The complexity of Explicit McNaughton-M\"uller Games also improves from cubic to quadratic.
翻译:交替图是一个方向图, 其顶点设置分为两个等级, 即存在性和通用性。 这构成了一个基本舞台, 用于玩家~ $quarre$ 和~ $\ ocircle$ 的极长双向滚动, 沿他们控制的弧形滚动。 我们研究在方向图中, 以强烈连接的形式交替交织, 以提供一个线性时间分解和健全的结构图描述。 为此引入了一个更精细的交替可达性概念 : 玩家~ $ 平方$ 试图到达双人游戏, 而不留下双向游戏的指定部分, 而玩家~ $\ ocircle$ 的交替性滑动。 这叫做 emph{ 安全交替可达 。 我们每个舞台的极密切连结性连接, 玩家~ 美元平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方。 我们方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平。