A continuous real-time respiratory sound automated analysis system is needed in clinical practice. Previously, we established an open access lung sound database, HF_Lung_V1, and automated lung sound analysis algorithms capable of detecting inhalation, exhalation, continuous adventitious sounds (CASs) and discontinuous adventitious sounds (DASs). In this study, HF-Lung-V1 has been further expanded to HF-Lung-V2 with 1.45 times of increase in audio files. The convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model was separately trained with training datasets of HF_Lung_V1 (V1_Train) and HF_Lung_V2 (V2_Train), and then were used for the performance comparisons of segment detection and event detection on both test datasets of HF_Lung_V1 (V1_Test) and HF_Lung_V2 (V2_Test). The performance of segment detection was measured by accuracy, predictive positive value (PPV), sensitivity, specificity, F1 score, receiver operating characteristic (ROC) curve and area under the curve (AUC), whereas that of event detection was evaluated with PPV, sensitivity, and F1 score. Results indicate that the model performance trained by V2_Train showed improvement on both V1_Test and V2_Test in inhalation, CASs and DASs, particularly in CASs, as well as on V1_Test in exhalation.
翻译:临床实践需要连续实时呼吸声自动分析系统。以前,我们建立了一个开放的肺声数据库(HF_Lung_V1)和自动肺声分析算法(能够检测吸入、呼气、连续冒险声音和不连续冒险声音(DASs)),并在这项研究中进一步将HF-Lung-V1扩大为HF-Lung-V2, 音频文件增加1.45倍。 脉冲神经网络(CNN)双向门门式经常单元(BIGRU)模型分别接受了高频-Lung_V1(V1_Train)和高频-Lung_V2(V2)培训数据集的培训。随后,HF-Lung-V1(V1测试模型)和高频-Lung_V2(V2_Test)测试数据集的性能比较。 部分检测的性能通过准确性能、预测值(PPV_V1) 敏感度、敏感度(F1级测试的性能和性能评估显示的性能和性能的性、性能、性能的性能、性能、性能的性能、性能、性能、性能、性能、性能、性能、性能评估的性能、性能、性能、性能的性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能的性能的性能的性能评估、性能评估、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能评估、性能、性能的性能的性能的性能的性能的性能的性能的性能评估、性能的性能评估、性能