We present randUBV, a randomized algorithm for matrix sketching based on the block Lanzcos bidiagonalization process. Given a matrix $\bf{A}$, it produces a low-rank approximation of the form ${\bf UBV}^T$, where $\bf{U}$ and $\bf{V}$ have orthonormal columns in exact arithmetic and $\bf{B}$ is block bidiagonal. In finite precision, the columns of both ${\bf U}$ and ${\bf V}$ will be close to orthonormal. Our algorithm is closely related to the randQB algorithms of Yu, Gu, and Li (2018) in that the entries of $\bf{B}$ are incrementally generated and the Frobenius norm approximation error may be efficiently estimated. Our algorithm is therefore suitable for the fixed-accuracy problem, and so is designed to terminate as soon as a user input error tolerance is reached. Numerical experiments suggest that the block Lanczos method is generally competitive with or superior to algorithms that use power iteration, even when $\bf{A}$ has significant clusters of singular values.
翻译:我们提出了基于 Lanzcos feriagonalization 过程的矩阵草图随机算法 RANDUBVV, 这是基于块 Lanzcos feriagonalization 过程的矩阵草图的随机算法 。 如果使用一个矩阵 $\ bf{ A}, 它将产生一个以美元为单位的低端近似值, 以美元为单位的 UBVT$为单位, 以美元为单位, 美元为单位, 美元为单位, 美元以美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位, 美元为单位。