The random-cluster model is a unifying framework for studying random graphs, spin systems and random networks. The model is closely related to the classical ferromagnetic Ising and Potts models and is often viewed as a generalization of these models. In this paper, we study a natural non-local Markov chain known as the Chayes-Machta dynamics for the mean-field case of the random-cluster model, where the underlying graph is the complete graph on $n$ vertices. The random-cluster model is parametrized by an edge probability $p$ and a cluster weight $q$. Our focus is on the critical regime: $p = p_c(q)$ and $q \in (1,2)$, where $p_c(q)$ is the threshold corresponding to the order-disorder phase transition of the model. We show that the mixing time of the Chayes-Machta dynamics is $O(\log n \cdot \log \log n)$ in this parameter regime, which reveals that the dynamics does not undergo an exponential slowdown at criticality, a surprising fact that had been predicted (but not proved) by statistical physicists. This provides a nearly optimal bound (up to the $\log\log n$ factor) for the mixing time of the mean-field Chayes-Machta dynamics in the only regime of parameters where no previous bound was known. Our proof consists of a multi-phased coupling argument that combines several key ingredients, including a new local limit theorem, a precise bound on the maximum of symmetric random walks with varying step sizes, and tailored estimates for critical random graphs.


翻译:随机集群模型是一个用于研究随机图形、 旋转系统和随机网络的统一框架。 随机集群模型与古典铁磁岛和波茨模型密切相关, 通常被视为这些模型的概括化。 在本文中, 我们研究一个自然的非本地的Markov链条, 称为 Chayes- Machta 动态, 用于随机集群模型的中位外观。 底图是 $$ 的完整图表。 随机集群模型被一个边缘概率 $p 和 组合重量 $q 。 我们的焦点是关键机制: $p = p_ c( q) $ 和 $q = in ( 1, 2, 2, $ p_ c) 美元是该模型中排序偏差阶段的临界值。 我们显示, Chayes- machta 动态的混合时间是$( nlog n, cdockot leg) 和 croupulate n ral ral ral), 显示该动态没有在临界度上进行指数的指数减速速速速速速变,, 一个精确的预估, 提供了我们的精确的预估。

0
下载
关闭预览

相关内容

[WWW2021]图结构估计神经网络
专知会员服务
43+阅读 · 2021年3月29日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
61+阅读 · 2020年7月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
0+阅读 · 2021年3月26日
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员