Most studies for NA random variable is under complete sampling setting, which is actually an relatively ideal condition in application. The paper relaxes this condition to the censoring incomplete sampling data and considers the topic for kernel estimation of the density function together with the hazard function based on the Kaplan-Meier estimator. The strong asymptotic properties for the two estimators are firstly established.
翻译:大部分关于NA随机变量的研究都处于完整的取样设置之中,这实际上是一个相对理想的适用条件。本文将这一条件放松到审查不完整的抽样数据时,并考虑了密度函数内核估计的主题,以及基于卡普兰-梅耶估计仪的危险函数。这两位估计仪的强性性能是首先确定的。