Recently, change detection methods for synthetic aperture radar (SAR) images based on convolutional neural networks (CNN) have gained increasing research attention. However, existing CNN-based methods neglect the interactions among multilayer convolutions, and errors involved in the preclassification restrict the network optimization. To this end, we proposed a layer attention-based noise-tolerant network, termed LANTNet. In particular, we design a layer attention module that adaptively weights the feature of different convolution layers. In addition, we design a noise-tolerant loss function that effectively suppresses the impact of noisy labels. Therefore, the model is insensitive to noisy labels in the preclassification results. The experimental results on three SAR datasets show that the proposed LANTNet performs better compared to several state-of-the-art methods. The source codes are available at https://github.com/summitgao/LANTNet
翻译:最近,以进化神经网络为基础的合成孔径雷达(SAR)图像的变化探测方法引起了越来越多的研究关注,然而,现有的CNN方法忽视了多层变异之间的相互作用,在重新分类过程中出现的错误限制了网络的优化。为此,我们建议建立一个基于层的注意的噪音耐控网络,称为LANTNet。特别是,我们设计了一个分层注意模块,以适应性地加权不同变异层的特征。此外,我们设计了一个噪音耐控损失功能,以有效抑制噪音标签的影响。因此,该模型对重新分类结果中的吵闹标签不敏感。三个SAR数据集的实验结果显示,拟议的LANTNet与一些最先进的方法相比表现更好。源代码见https://github.com/summitgao/LANTNet。