Developing a safe, stable, and efficient obstacle avoidance policy in crowded and narrow scenarios for multiple robots is challenging. Most existing studies either use centralized control or need communication with other robots. In this paper, we propose a novel logarithmic map-based deep reinforcement learning method for obstacle avoidance in complex and communication-free multi-robot scenarios. In particular, our method converts laser information into a logarithmic map. As a step toward improving training speed and generalization performance, our policies will be trained in two specially designed multi-robot scenarios. Compared to other methods, the logarithmic map can represent obstacles more accurately and improve the success rate of obstacle avoidance. We finally evaluate our approach under a variety of simulation and real-world scenarios. The results show that our method provides a more stable and effective navigation solution for robots in complex multi-robot scenarios and pedestrian scenarios. Videos are available at https://youtu.be/r0EsUXe6MZE.
翻译:在拥挤和狭窄的情况下,为多个机器人制定安全、稳定和高效的避免障碍政策是一项挑战。大多数现有研究要么使用集中控制,要么需要与其他机器人沟通。在本文中,我们提出了一种新的基于对数的深强化地图学习方法,以便在复杂和无通信的多机器人情景中避免障碍。特别是,我们的方法将激光信息转换成对数地图。作为提高培训速度和普及性绩效的一个步骤,我们的政策将在两种专门设计的多机器人情景中接受培训。与其他方法相比,对数地图可以更准确地代表障碍,提高避免障碍的成功率。我们最后在各种模拟和现实世界情景中评估了我们的方法。结果显示,我们的方法为复杂多机器人情景和行人情景中的机器人提供了更加稳定和有效的导航解决方案。视频见https://youtu.be/r0EsUXe6MZE。