In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical non-negative least squares method. The computational algorithm is used to rational approximate the function $x^{-\alpha}, \ 0 < \alpha < 1, \ x \geq 1$. The second example concerns the approximation of the stretching exponential function $\exp(- x^{\alpha} ), \ \ \quad 0 < \alpha < 1$ at $ x \geq 0$ by the sum of exponents.
翻译:在计算实践中,大多数注意力都放在函数和近似的合理近似上,由推论者加起来。 我们考虑的是足够大的非线性近近近的等级, 其特征为一组两个需要的参数。 大约的函数在第一个参数中是线性; 这些参数被假定为是正的。 相近函数的单个条件代表着一个固定函数, 其非线性取决于第二个参数。 数字近近似通过各个点的近似函数值将剩余功能最小化。 第二个参数的值设置在允许值间距的更宽的一组点上。 拟议的方法关键特征包括确定经典的非阴性最小正方形方法的每一种不同的迭代的第一个参数。 计算算法用于合理接近 $x\\\\\\ alpha},\ 0 < ALpha < 1\ geq $。 第二个例子涉及伸缩的指数函数 $\ exqremod(- xalpha}\\\\\\\\\ qq= a expha 0\ a expha. 0\ ex d d= ax d= a. dah= axxxxx d= d= expha) exphax 0\ d== exxx==== =============================================================================================================================================================================================================================