Control Barrier Functions (CBFs) have been applied to provide safety guarantees for robot navigation. Traditional approaches consider fixed CBFs during navigation and hand-tune the underlying parameters apriori. Such approaches are inefficient and vulnerable to changes in the environment. The goal of this paper is to learn CBFs for multi-robot navigation based on what robots perceive about their environment. In order to guarantee the feasibility of the navigation task, while ensuring robot safety, we pursue a trade-off between conservativeness and aggressiveness in robot behavior by defining dynamic environment-aware CBF constraints. Since the explicit relationship between CBF constraints and navigation performance is challenging to model, we leverage reinforcement learning to learn time-varying CBFs in a model-free manner. We parameterize the CBF policy with graph neural networks (GNNs), and design GNNs that are translation invariant and permutation equivariant, to synthesize decentralized policies that generalize across environments. The proposed approach maintains safety guarantees (due to the underlying CBFs), while optimizing navigation performance (due to the reward-based learning). We perform simulations that compare the proposed approach with fixed CBFs tuned by exhaustive grid-search. The results show that environment-aware CBFs are capable of adapting to robot movements and obstacle changes, yielding improved navigation performance and robust generalization.


翻译:应用了控制屏障功能(CBFs)来为机器人导航提供安全保障。传统方法在航行期间考虑固定的 CBFs,并且将基本参数作为首要的参数。这些方法效率低,易受环境变化的影响。本文件的目的是根据机器人对其环境的看法学习多机器人导航的 CBFs 。为了保证导航任务的可行性,在确保机器人安全的同时,我们通过界定动态环境觉醒的CBF限制,在机器人行为的保守性和侵略性之间实行权衡取舍。由于CBF限制和导航性能之间的明确关系对模型来说具有挑战性,我们利用强化学习来学习时间变化的CBFFs,以无模式的方式学习。我们把CFFS政策与图形神经网络(GNS)进行参数化,并设计能翻译变异和变异的GNNFs,以综合各种环境的分散化政策。拟议办法维持了安全保障(由于基本的CBFFS),同时优化了导航性能(由于有报酬的学习),我们进行了模拟,将CWFS-BS-BS-BS-BS-S-AD-SD-SDRAD-S-SD-S-SD-SD-SD-SD-SDRDRDRDRD-S-S-S-SD-SD-SD-SD-S-S-S-S-S-S-SD-S-S-S-S-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-SD-S-S-SD-SD-SD-S-S-S-S-S-S-SD-S-S-S-S-S-S-S-S-S-SD-S-S-S-S-S-SD-SD-S-SD-SD-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SD-S-S-S-S-S-B-S-S-S-S-</s>

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
专知会员服务
45+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员