Stochastic gradient algorithms are often unstable when applied to functions that do not have Lipschitz-continuous and/or bounded gradients. Gradient clipping is a simple and effective technique to stabilize the training process for problems that are prone to the exploding gradient problem. Despite its widespread popularity, the convergence properties of the gradient clipping heuristic are poorly understood, especially for stochastic problems. This paper establishes both qualitative and quantitative convergence results of the clipped stochastic (sub)gradient method (SGD) for non-smooth convex functions with rapidly growing subgradients. Our analyses show that clipping enhances the stability of SGD and that the clipped SGD algorithm enjoys finite convergence rates in many cases. We also study the convergence of a clipped method with momentum, which includes clipped SGD as a special case, for weakly convex problems under standard assumptions. With a novel Lyapunov analysis, we show that the proposed method achieves the best-known rate for the considered class of problems, demonstrating the effectiveness of clipped methods also in this regime. Numerical results confirm our theoretical developments.


翻译:当应用到没有Lipschitz持续和(或)捆绑梯度的函数时,沙变梯度算法往往不稳定。渐变剪切是一种简单而有效的技术,可以稳定容易引发梯度爆炸的问题的培训过程。尽管其广受欢迎,但梯变剪切脂质的趋同特性不易理解,特别是对于沙变问题。本文件确定了剪切的沙变(次)梯度(次)法(SGD)在质量和数量两方面的趋同结果,用于与快速增长的亚梯度相交的非moose convex函数。我们的分析显示,剪切的SGD算法提高了SGD的稳定性,而且在许多情况下,剪切的SGD算法具有有限的趋同率。我们还研究了剪切方法与势头的趋同性,其中包括剪切的SGD,作为标准假设下较弱的粘结问题的特殊案例。我们用新的Lyapunov分析显示,拟议的方法在质量和数量上达到了最为人所知的水平,显示了这个制度下剪切方法的有效性。

0
下载
关闭预览

相关内容

截断,即通过某个阈值来控制系数的大小,若系数小于某个阈值便将该系数设置为0,即简单截断。
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员