Incorporating a so-called "momentum" dynamic in gradient descent methods is widely used in neural net training as it has been broadly observed that, at least empirically, it often leads to significantly faster convergence. At the same time, there are very few theoretical guarantees in the literature to explain this apparent acceleration effect. Even for the classical strongly convex quadratic problems, several existing results only show Polyak's momentum has an accelerated linear rate asymptotically. In this paper, we first revisit the quadratic problems and show a non-asymptotic accelerated linear rate of Polyak's momentum. Then, we provably show that Polyak's momentum achieves acceleration for training a one-layer wide ReLU network and a deep linear network, which are perhaps the two most popular canonical models for studying optimization and deep learning in the literature. Prior work Du at al. 2019 and Wu et al. 2019 showed that using vanilla gradient descent, and with an use of over-parameterization, the error decays as $(1- \Theta(\frac{1}{ \kappa'}))^t$ after $t$ iterations, where $\kappa'$ is the condition number of a Gram Matrix. Our result shows that with the appropriate choice of parameters Polyak's momentum has a rate of $(1-\Theta(\frac{1}{\sqrt{\kappa'}}))^t$. For the deep linear network, prior work Hu et al. 2020 showed that vanilla gradient descent has a rate of $(1-\Theta(\frac{1}{\kappa}))^t$, where $\kappa$ is the condition number of a data matrix. Our result shows an acceleration rate $(1- \Theta(\frac{1}{\sqrt{\kappa}}))^t$ is achievable by Polyak's momentum. All the results in this work are obtained from a modular analysis, which can be of independent interest. This work establishes that momentum does indeed speed up neural net training.


翻译:将所谓的“ momentum” 动态纳入梯度下游方法, 被广泛用于神经网培训中, 因为人们广泛观察到, 至少从经验上看, 它通常会导致更快的趋同。 与此同时, 文献中几乎没有什么理论保障来解释这种明显的加速效应。 即使是古典的旋律二次曲线问题, 一些现有结果也只显示Polyak 的动力具有加速的线性速度( 平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方上下方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方, 平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方, 平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方,平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方

0
下载
关闭预览

相关内容

动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。 动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员