In many applications, the process of identifying a specific feature of interest often involves testing multiple hypotheses for their joint statistical significance. Examples include mediation analysis which simultaneously examines the existence of the exposure-mediator and the mediator-outcome effects, and replicability analysis aiming to identify simultaneous signals that exhibit statistical significance across multiple independent experiments. In this study, we present a new approach called joint mirror (JM) procedure that effectively detects such features while maintaining false discovery rate (FDR) control in finite samples. The JM procedure employs an iterative method that gradually shrinks the rejection region based on progressively revealed information until a conservative estimate of the false discovery proportion (FDP) is below the target FDR level. Additionally, we introduce a more stringent error measure, known as the modified FDR (mFDR), which assigns weights to each false discovery based on its number of null components. We demonstrate that, under appropriate assumptions, the JM procedure controls the mFDR in finite samples. To implement the JM procedure, we propose an efficient algorithm that can incorporate partial ordering information. Through extensive simulations, we demonstrate that our procedure effectively controls the mFDR and enhances statistical power across various scenarios. Finally, we showcase the utility of our method by applying it to real-world mediation and replicability analyses.
翻译:暂无翻译