Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations. In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves excellent performance in practice.
翻译:以对称为基础的神经网络往往限制建筑结构,以便实现对一组变异的变异或变异性。 在本文中,我们提出一个替代方案,通过学习生成数据明度的描述来避免这种结构上的制约。 这些卡通化功能可以很容易地被插入非等化主干结构中。 我们为许多感兴趣的群体提供了实施这些功能的明确方法。 我们展示了这一方法的普遍性,同时提供了可解释的洞察力。 我们的主要假设是,学习神经网络来进行罐体化比使用预先定义的超自然学要好。 我们的结果表明,学习卡通化功能确实能够带来更好的结果,而且该方法在实践上取得了良好的业绩。