A fundamental problem in quantum physics is to encode functions that are completely anti-symmetric under permutations of identical particles. The Barron space consists of high-dimensional functions that can be parameterized by infinite neural networks with one hidden layer. By explicitly encoding the anti-symmetric structure, we prove that the anti-symmetric functions which belong to the Barron space can be efficiently approximated with sums of determinants. This yields a factorial improvement in complexity compared to the standard representation in the Barron space and provides a theoretical explanation for the effectiveness of determinant-based architectures in ab-initio quantum chemistry.
翻译:量子物理中的一个基本问题是如何编码完全满足粒子置换对称性的函数。Barron空间由高维函数组成,这些函数可以由带有一层隐藏层的无限神经网络参数化。通过明确编码反对称结构,我们证明了属于Barron空间的反对称函数可以通过行列式和求和有效逼近。这比在Barron空间中的标准表示提供了阶乘级的复杂性改进,并为行列式为基础的体系在从头算量子化学中的有效性提供了理论解释。