Identification of autoregressive models with exogenous input (ARX) is a classical problem in system identification. This article considers the errors-in-variables (EIV) ARX model identification problem, where input measurements are also corrupted with noise. The recently proposed DIPCA technique solves the EIV identification problem but is only applicable to white measurement errors. We propose a novel identification algorithm based on a modified Dynamic Iterative Principal Components Analysis (DIPCA) approach for identifying the EIV-ARX model for single-input, single-output (SISO) systems where the output measurements are corrupted with coloured noise consistent with the ARX model. Most of the existing methods assume important parameters like input-output orders, delay, or noise-variances to be known. This work's novelty lies in the joint estimation of error variances, process order, delay, and model parameters. The central idea used to obtain all these parameters in a theoretically rigorous manner is based on transforming the lagged measurements using the appropriate error covariance matrix, which is obtained using estimated error variances and model parameters. Simulation studies on two systems are presented to demonstrate the efficacy of the proposed algorithm.
翻译:使用外源输入(ARX)的自动递减模型的识别是系统识别的一个典型问题。 本条考虑了输入测量也因噪音而腐蚀的变差( EIV) ARX 模型识别问题, 最近提议的 DIPCA 技术解决了 EIV 识别问题, 但只适用于白色测量错误。 我们提议了一种新的识别算法, 其依据是修改后的动态迭代主要构件分析( DIPCA) 方法, 用以识别单输入、 单输出( SISO) 系统EIV- ARX 模型, 该模型的输出测量结果与ARX 模型的彩色噪声发生腐蚀。 大部分现有方法包含重要参数, 如输入输出指令、延迟或噪声变异等, 有待了解。 这项工作的新颖之处在于对误差、 进程顺序、 延迟 和 模型参数的联合估计。 用于以严格方式获取所有这些参数的核心理念是使用适当的误差变量矩阵改变延缩度测量, 。 有关两个系统的模拟研究展示了拟议算法的功效。