We propose a formal expansion of multiple relaxation times lattice Boltzmann schemes in terms of a single infinitesimal numerical variable. The result is a system of partial differential equations for the conserved moments of the lattice Boltzmann scheme. The expansion is presented in the nonlinear case up to fourth order accuracy. The asymptotic corrections of the nonconserved moments are developed in terms of equilibrium values and partial differentials of the conserved moments. Both expansions are coupled and conduct to explicit compact formulas. The new algebraic expressions are validated with previous results obtained with this approach. The example of isothermal D2Q9 lattice Boltzmann scheme illustrates the theoretical framework.
翻译:我们建议正式扩大多个放松时间的拉蒂斯·博尔茨曼计划,用一个微小的数值变量来表示。 结果是对拉蒂斯·博尔茨曼计划保存的时段采用局部差异方程式。 扩展表现在非线性案例中, 准确度最高为第四级。 对未保存时间的不完善纠正表现在均衡值和被保存时间的部分差异上。 两种扩展同时并用明确的紧凑公式来进行。 新的代数表达方式以先前通过这种方法获得的结果来验证。 等热 D2Q9 lattics Boltzmann 计划的例子展示了理论框架 。