In network analysis, the core structure of modeling interest is usually hidden in a larger network in which most structures are not informative. The noise and bias introduced by the non-informative component in networks can obscure the salient structure and limit many network modeling procedures' effectiveness. This paper introduces a novel core-periphery model for the non-informative periphery structure of networks without imposing a specific form for the informative core structure. We propose spectral algorithms for core identification as a data preprocessing step for general downstream network analysis tasks based on the model. The algorithm enjoys a strong theoretical guarantee of accuracy and is scalable for large networks. We evaluate the proposed method by extensive simulation studies demonstrating various advantages over many traditional core-periphery methods. The method is applied to extract the informative core structure from a citation network and give more informative results in the downstream hierarchical community detection.
翻译:在网络分析中,示范利益的核心结构通常隐藏在一个较大的网络中,其中大多数结构没有信息,网络中非信息化部分带来的噪音和偏见可能掩盖突出的结构,限制许多网络建模程序的有效性,本文为网络非信息化外围结构引入了一个新的核心范围模型,而没有为信息化核心结构规定具体的形式。我们建议了用于核心识别的光谱算法,作为基于模型的普通下游网络分析任务的一个数据处理前步骤。算法在理论上具有很强的准确性保障,对大型网络来说是可扩展的。我们通过广泛的模拟研究评估拟议方法,展示许多传统核心外围方法的各种优势。该方法用于从引用网络中提取信息性核心结构,并在下游等级社区探测中提供更多信息。