Under the classical long-span asymptotic framework we develop a class of Generalized Laplace (GL) inference methods for the change-point dates in a linear time series regression model with multiple structural changes analyzed in, e.g., Bai and Perron (1998). The GL estimator is defined by an integration rather than optimization-based method and relies on the least-squares criterion function. It is interpreted as a classical (non-Bayesian) estimator and the inference methods proposed retain a frequentist interpretation. This approach provides a better approximation about the uncertainty in the data of the change-points relative to existing methods. On the theoretical side, depending on some input (smoothing) parameter, the class of GL estimators exhibits a dual limiting distribution; namely, the classical shrinkage asymptotic distribution, or a Bayes-type asymptotic distribution. We propose an inference method based on Highest Density Regions using the latter distribution. We show that it has attractive theoretical properties not shared by the other popular alternatives, i.e., it is bet-proof. Simulations confirm that these theoretical properties translate to better finite-sample performance.
翻译:在古典的长长线线状时间序列回归模型(如Bai和Perron (1998年))下,我们开发了一类一般拉皮尔(GL)推论方法,用于在线性时间序列回归模型中进行修改点日期的推论,并进行多种结构变化分析,例如Bai和Perron(1998年)。GL估计器的定义是集成法,而不是以优化为基础的方法,并依赖于最小平方标准函数。它被解释为一种古典(非Bayesian)的估测器和提议的推论方法,保留一种经常的诠释。这个方法为相对于现有方法的变化点数据中的不确定性提供了更好的近似值。在理论方面,根据某些输入(吸附)参数分析,GL估计器的类别显示了双重限制分布;即古典缩微缩胶分布,或巴耶斯类型为抑制分布。我们用后一种分布法提出一种基于最高密度区域的推论方法。我们表明,它具有与其他流行替代品不共享的理论属性,即理论性能更精确地证实这些精确性。