This paper proposes an efficient iris localization method without using iris segmentation and circle fitting. Conventional iris localization methods first extract iris regions by using semantic segmentation methods such as U-Net. Afterward, the inner and outer iris circles are localized using the traditional circle fitting algorithm. However, this approach requires high-resolution encoder-decoder networks for iris segmentation, so it causes computational costs to be high. In addition, traditional circle fitting tends to be sensitive to noise in input images and fitting parameters, causing the iris recognition performance to be poor. To solve these problems, we propose an iris localization network (ILN), that can directly localize pupil and iris circles with eyelid points from a low-resolution iris image. We also introduce a pupil refinement network (PRN) to improve the accuracy of pupil localization. Experimental results show that the combination of ILN and PRN works in 34.5 ms for one iris image on a CPU, and its localization performance outperforms conventional iris segmentation methods. In addition, generalized evaluation results show that the proposed method has higher robustness for datasets in different domain than other segmentation methods. Furthermore, we also confirm that the proposed ILN and PRN improve the iris recognition accuracy.
翻译:本文建议一种高效的 iris 本地化方法, 但不使用 iris 分区和圆圈安装 。 常规 iris 本地化方法首先通过 U- Net 等语义化分解方法提取 iris 区域 。 之后, 使用传统的圆形安装算法, 内部和外部 iris 圈是本地化的 。 但是, 这种方法需要高分辨率的 编码器- 解码器网络来进行 iris 分解, 从而导致计算成本很高 。 此外, 传统的环化方法往往对输入图像和安装参数中的噪音敏感, 导致 iris 识别性表现差。 为了解决这些问题, 我们建议建立一个 iris 本地化 网络( IRS 网络 ), 可以直接将学生和 iris 圆圈与低分辨率 iris 图像的眼皮片分解点直接本地化为本地化 。 我们还引入了一个学生精化网络( PR ),, 实验结果表明, ILN 和 PRN 组合 的组合在34.5 图像上的作用 超越常规的常规 分解方法。 此外, 也证实了了我们提议的域化方法。