We study the problem of fairly allocating a set of indivisible goods among agents with matroid rank valuations -- every good provides a marginal value of $0$ or $1$ when added to a bundle and valuations are submodular. We generalize the Yankee Swap algorithm to create a simple framework, called General Yankee Swap, that can efficiently compute allocations that maximize any justice criterion (or fairness objective) satisfying some mild assumptions. Along with maximizing a justice criterion, General Yankee Swap is guaranteed to maximize utilitarian social welfare, ensure strategyproofness and use at most a quadratic number of valuation queries. We show how General Yankee Swap can be used to compute allocations for five different well-studied justice criteria: (a) Prioritized Lorenz dominance, (b) Maximin fairness, (c) Weighted leximin, (d) Max weighted Nash welfare, and (e) Max weighted $p$-mean welfare. In particular, our framework provides the first polynomial time algorithms to compute weighted leximin, max weighted Nash welfare and max weighted $p$-mean welfare allocations for agents with matroid rank valuations.
翻译:我们研究的是,在拥有机械等级估价的代理人之间公平分配一套不可分割的商品的问题 -- -- 每件商品在捆绑时都提供价值为0美元或1美元的边际价值,而估值则是次式的。我们普遍采用洋基斯瓦普算法,以建立一个简单的框架,称为扬基斯瓦普将军,能够有效地计算分配,使任何司法标准(或公平目标)达到一定的温和假设最大化。除了尽量扩大司法标准外,扬基斯瓦普将军还保证最大限度地提高功利他主义的社会福利,确保战略的可靠性,并在大多数的等量的估价查询中使用。我们展示了如何利用扬基斯瓦普将军来计算五个不同研究良好的司法标准的分配额:(a) 优先的洛伦茨支配地位,(b) Maximin公平,(c) 加权纳什福利,(d) 最大加权税额,以及(e) 最高加权美元福利。特别是,我们的框架提供了第一个计算加权利基埃明、最高加权纳什福利和最高加权美元平均福利分配额的代理人的混合时间算法。