For any $\varepsilon>0$, we give a simple, deterministic $(4+\varepsilon)$-approximation algorithm for the Nash social welfare (NSW) problem under submodular valuations. The previous best approximation factor was $380$ via a randomized algorithm. We also consider the asymmetric variant of the problem, where the objective is to maximize the weighted geometric mean of agents' valuations, and give an $(\omega + 2 +\varepsilon) e$-approximation if the ratio between the largest weight and the average weight is at most $\omega$. We also show that the $1/2$-EFX envy-freeness property can be attained simultaneously with a constant-factor approximation. More precisely, we can find an allocation in polynomial time which is both $1/2$-EFX and a $(8+\varepsilon)$-approximation to the symmetric NSW problem under submodular valuations. The previous best approximation factor under $1/2$-EFX was linear in the number of agents.
翻译:对于任意$\varepsilon>0$,我们针对子模估值下的Nash社会福利问题给出了简单的确定性$(4+\varepsilon)$-近似算法。之前的最佳近似比因随机算法而为380。我们还考虑了问题的非对称变体,即目标是最大化代理人估值的加权几何平均值,并在最大权重和平均权重之间的比率不超过$\omega$时给出了$(\omega+2+\varepsilon)e$-近似解。我们还表明,1/2-EFX 无嫉妒策略可以同时获得常数因子的近似值。更确切地说,我们可以在多项式时间内找到既是1/2-EFX又是对子模估值下的对称NSW问题的$(8+\varepsilon)$-近似值。 之前在1/2-EFX下的最佳近似比例是代理人数量的线性函数。