As a simple and robust mobile robot base, differential drive robots that can be modelled as a kinematic unicycle find significant applications in logistics and service robotics in both industrial and domestic settings. Safe robot navigation around obstacles is an essential skill for such unicycle robots to perform diverse useful tasks in complex cluttered environments, especially around people and other robots. Fast and accurate safety assessment plays a key role in reactive and safe robot motion design. In this paper, as a more accurate and still simple alternative to the standard circular Lyapunov level sets, we introduce novel conic feedback motion prediction methods for bounding the close-loop motion trajectory of the kinematic unicycle robot model under a standard unicycle motion control approach. We present an application of unicycle feedback motion prediction for safe robot navigation around obstacles using reference governors, where the safety of a unicycle robot is continuously monitored based on the predicted future robot motion. We investigate the role of motion prediction on robot behaviour in numerical simulations and conclude that fast and accurate feedback motion prediction is key for fast, reactive, and safe robot navigation around obstacles.
翻译:作为一种简单而健壮的移动机器人基础,差分驱动机器人可被建模为运动学的独轮车,在物流和服务机器人等诸多应用中具有重要意义。安全绕过障碍物是这类独轮车机器人在复杂环境中执行各种实用任务的必备技能,特别是在人群和其他机器人的环境中。快速而准确的安全评估对于反应和安全的机器人运动设计起着关键作用。本文中,我们引入了新颖的锥形反馈运动预测方法,作为标准独轮车运动控制方法下限定闭环运动轨迹的更准确而简单的选择,用以实现独轮车的反馈运动预测。我们通过参考管制方法,将独轮车反馈运动预测应用于绕过障碍物的安全机器人导航任务,此方法可以基于预测的未来机器人运动来不断监测独轮车的安全性。在数值模拟中,我们探讨了运动预测在机器人行为中的作用,并得出结论:快速而准确的反馈运动预测对于快速、反应和安全的机器人绕过障碍物至关重要。