Finite-time Lyapunov exponents (FTLEs) provide a powerful approach to compute time-varying analogs of invariant manifolds in unsteady fluid flow fields. These manifolds are useful to visualize the transport mechanisms of passive tracers advecting with the flow. However, many vehicles and mobile sensors are not passive, but are instead actuated according to some intelligent trajectory planning or control law; for example, model predictive control and reinforcement learning are often used to design energy-efficient trajectories in a dynamically changing background flow. In this work, we investigate the use of FTLE on such controlled agents to gain insight into optimal transport routes for navigation in known unsteady flows. We find that these controlled FTLE (cFTLE) coherent structures separate the flow field into different regions with similar costs of transport to the goal location. These separatrices are functions of the planning algorithm's hyper-parameters, such as the optimization time horizon and the cost of actuation. Computing the invariant sets and manifolds of active agent dynamics in dynamic flow fields is useful in the context of robust motion control, hyperparameter tuning, and determining safe and collision-free trajectories for autonomous systems. Moreover, these cFTLE structures provide insight into effective deployment locations for mobile agents with actuation and energy constraints to traverse the ocean or atmosphere.


翻译:短文摘要:有限时间Lyapunov指数(FTLEs)为计算流体流场中时间变化的不变流形提供了一种强大的方法。这些流形用于可视化被流体带动的被动示踪器的传输机制。然而,许多车辆和移动传感器并非是被动的,而是根据某些智能轨迹规划或控制定律进行操作的。例如,模型预测控制和强化学习经常用于设计在动态背景下的能量有效轨迹。在这项工作中,我们研究了在这些控制的代理人上使用FTLE的方法,以便获得关于在已知非稳态流中的最佳传输路线的洞察力。我们发现这些被控FTLE(cFTLE)相干结构将流场分为不同的区域,这些区域具有类似的传输成本,以达到目标位置。这些分界线是规划算法的超参数(例如优化时间范围和操作成本)的函数。在动态流场中计算主动代理人的不变集和流形在强韧运动控制、超参数调整以及为自主系统确定安全和无碰撞轨迹方面是有用的。此外,这些cFTLE结构为具有操作和能量限制的移动代理的有效部署位置提供了洞察力。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
21+阅读 · 2022年11月8日
VIP会员
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员