Combining multiple LiDARs enables a robot to maximize its perceptual awareness of environments and obtain sufficient measurements, which is promising for simultaneous localization and mapping (SLAM). This paper proposes a system to achieve robust and simultaneous extrinsic calibration, odometry, and mapping for multiple LiDARs. Our approach starts with measurement preprocessing to extract edge and planar features from raw measurements. After a motion and extrinsic initialization procedure, a sliding window-based multi-LiDAR odometry runs onboard to estimate poses with online calibration refinement and convergence identification. We further develop a mapping algorithm to construct a global map and optimize poses with sufficient features together with a method to model and reduce data uncertainty. We validate our approach's performance with extensive experiments on ten sequences (4.60km total length) for the calibration and SLAM and compare them against the state-of-the-art. We demonstrate that the proposed work is a complete, robust, and extensible system for various multi-LiDAR setups. The source code, datasets, and demonstrations are available at https://ram-lab.com/file/site/m-loam.
翻译:结合多种激光成像仪使机器人能够最大限度地提高对环境的认识,并获得足够的测量数据,这对同时进行定位和绘图(SLAM)很有希望。本文建议建立一个系统,实现多个激光成像仪的强大和同步外部校准、odograph和绘图。我们的方法是从原始测量中提取边缘和平面特征的测量前处理过程开始。在运动和外部初始化程序之后,在机上运行一个滑动窗口的多光成象仪,以估计在网上校准和趋同过程中形成的情况。我们进一步开发了一种绘图算法,以构建一个全球地图,并优化配有足够特征的配置,以及一种模型和减少数据不确定性的方法。我们验证了我们的方法的性能,对校准和SLAMM的十个序列进行了广泛的实验(4.60公里总长度),并将它们与最新技术进行比较。我们证明,所提议的工作是一个完整、稳健和可扩展的系统,供各种多光成像成像成像和趋同特征。我们的源码、数据集和演示可在 https://ram-lab.com/file/site.