We investigate the computational complexity of a family of substructural logics with exchange and weakening but without contraction. With the aid of the techniques provided by Lazi\'c and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening ($\mathbf{FL}_{\mathbf{ew}}$) is TOWER-complete, where TOWER is one of the non-elementary complexity classes introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of $\mathbf{FL}_{\mathbf{ew}}$. We furthermore show the TOWER-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004).
翻译:我们调查了一个以交换和削弱但不收缩的亚下结构逻辑体系的计算复杂性。 在Lazi\'c和Schmitz(2015年)提供的技术帮助下,我们表明,用交换和削弱($\mathbf{FL ⁇ mathb{mathb{wäff{ew ⁇ $$)来计算全兰贝克微积分的可减轻性问题是TOWER的完成, TOWER是Schmitz(2016年)引进的非基本复杂分类之一。同样的复杂性结果甚至对BCK-logic的可减轻性, 即美元(mathbf{FLFL ⁇ _mathb{w{w{w ⁇ $)的隐含性碎片具有同样的重要性。我们进一步展示了TWER对基本亲近逻辑的可克服性问题的完整性,Dal Lago和Martini(2004年)证明了这一点。