Compared to conventional zero-shot learning (ZSL) where recognising unseen classes is the primary or only aim, the goal of generalized zero-shot learning (GZSL) is to recognise both seen and unseen classes. Most GZSL methods typically learn to synthesise visual representations from semantic information on the unseen classes. However, these types of models are prone to overfitting the seen classes, resulting in distribution overlap between the generated features of the seen and unseen classes. The overlapping region is filled with uncertainty as the model struggles to determine whether a test case from within the overlap is seen or unseen. Further, these generative methods suffer in scenarios with sparse training samples. The models struggle to learn the distribution of high dimensional visual features and, therefore, fail to capture the most discriminative inter-class features. To address these issues, in this paper, we propose a novel framework that leverages dual variational autoencoders with a triplet loss to learn discriminative latent features and applies the entropy-based calibration to minimize the uncertainty in the overlapped area between the seen and unseen classes. Specifically, the dual generative model with the triplet loss synthesises inter-class discriminative latent features that can be mapped from either visual or semantic space. To calibrate the uncertainty for seen classes, we calculate the entropy over the softmax probability distribution from a general classifier. With this approach, recognising the seen samples within the seen classes is relatively straightforward, and there is less risk that a seen sample will be misclassified into an unseen class in the overlapped region. Extensive experiments on six benchmark datasets demonstrate that the proposed method outperforms state-of-the-art approaches.


翻译:与常规零光学习(ZSL)相比(ZSL),在常规零光学习(ZSL)中,承认看不见的班级是主要或唯一目的,普遍零光学习(GZSL)的目标是既承认可见的班级,也承认看不见的班级。大多数GZSL方法通常会学习从隐性班级的语义信息中合成视觉表现。然而,这些类型的模型容易过度适应所见班级,导致所见班级和不可见班级所产生特征之间的分布重叠。随着模型努力确定从重叠的班级内部的测试案例被看还是不可见,重叠的班级(GZSL)的目标是既认得普通班级,又认得普通班级间视觉显示的视觉表达方式。从高度视觉显示的离差分级的双精度模型,从可辨的班级中看出的智能级间混校正的六级方法。我们可以看到,在普通班级内部显示的智能化方法中,从视觉级间校正的机级中可以看到。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2021年2月15日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员