To extend a partial order to a total order, we can map each element s to the number of elements that are less than s. Due to the transitivity of a partial order, the obtained total order preserves the original partial order. In a continuous measurable space, we can map each element s to the volume of the space that consists of elements that are less than s. This simple idea generates a new family of mutual information measures, volume mutual information (VMI). This new measure family has an application in peer prediction. In the setting where participants are asked multiple similar possibly subjective multi-choice questions (e.g. Do you like Bulbasaur? Y/N; do you like Squirtle? Y/N), peer prediction aims to design mechanisms that encourage honest subjective feedback without verification. We use VMI to design a family of mechanisms where truth-telling is better than any other strategy and all participants only need to answer a small constant number of tasks. Previously, Determinant Mutual Information (DMI)-Mechanism is the only mechanism that satisfies the two properties. We also give DMI a geometric intuition by proving that DMI is a special case of VMI. Finally, we provide a visualization of multiple commonly used information measures as well as the new VMI in the binary case.
翻译:为了将部分顺序扩展为全部顺序,我们可以将每个元素映射为低于全部顺序的元素数量。由于部分顺序的过渡性,获得的总顺序保留了原来的部分顺序。在一个连续的可测量空间中,我们可以将每个元素映射为空间的体积,空间的体积由不及于全部顺序的元素组成。这一简单的想法产生了一个新的信息体系,即相互测量、数量信息(VMI)。这个新度量系在同行预测中有一个应用程序。在向参与者询问多个可能类似的主观多选择问题(例如,你喜欢Bulbasaur吗?Y/N;你喜欢Squirtle?Y/N)的环境下,同行预测旨在设计鼓励诚实的主观反馈而无需核实的机制。我们用VMI来设计一个机制的组合,在其中,真相说明比任何其他战略都好,所有参与者只需要回答少量的不变任务。以前,威慑式相互信息(DMI)-Mychanis是满足这两个特性的唯一机制。我们还给DMI提供几何测量性直觉直觉,证明DMI是VMI的一个共同使用的特殊案例。