We investigate the performance of a class of particle filters (PFs) that can automatically tune their computational complexity by evaluating online certain predictive statistics which are invariant for a broad class of state-space models. To be specific, we propose a family of block-adaptive PFs based on the methodology of Elvira et al (2017). In this class of algorithms, the number of Monte Carlo samples (known as particles) is adjusted periodically, and we prove that the theoretical error bounds of the PF actually adapt to the updates in the number of particles. The evaluation of the predictive statistics that lies at the core of the methodology is done by generating fictitious observations, i.e., particles in the observation space. We study, both analytically and numerically, the impact of the number $K$ of these particles on the performance of the algorithm. In particular, we prove that if the predictive statistics with $K$ fictitious observations converged exactly, then the particle approximation of the filtering distribution would match the first $K$ elements in a series of moments of the true filter. This result can be understood as a converse to some convergence theorems for PFs. From this analysis, we deduce an alternative predictive statistic that can be computed (for some models) without sampling any fictitious observations at all. Finally, we conduct an extensive simulation study that illustrates the theoretical results and provides further insights into the complexity, performance and behavior of the new class of algorithms.


翻译:我们调查了粒子过滤器(PFs)的性能,这些粒子过滤器可以自动调整其计算复杂性,方法是通过在线评估某些预测性统计数据,这些数据对于一系列广泛的州-空间模型是变化不定的。具体地说,我们建议根据Elvira等人(2017年)的方法,建立一组块式适应性PF。在这一类算法中,蒙特卡洛样本(称为粒子)的数量定期调整,我们证明PF的理论性差错范围实际上适应了粒子数量更新的更新。本方法核心的预测性统计数据的评估是通过产生虚假的观察,即观察空间中的粒子。我们从分析角度和数字角度研究这些粒子的数量对算法绩效的影响。特别是,我们证明,如果用$K美元模拟观测的预测性能精确地组合在一起,那么过滤分布的粒子近似于一系列真实过滤器中的第一个基元元素。这一结果可以被理解为从某种替代的轨迹,从某种模拟的模拟到某种模拟性能的模拟结果,我们最终可以提供一种模拟的模型。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月13日
Arxiv
0+阅读 · 2021年4月2日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员