The pseudo-inverse of a graph Laplacian matrix, denoted as $L^\dagger$, finds extensive application in various graph analysis tasks. Notable examples include the calculation of electrical closeness centrality, determination of Kemeny's constant, and evaluation of resistance distance. However, existing algorithms for computing $L^\dagger$ are often computationally expensive when dealing with large graphs. To overcome this challenge, we propose novel solutions for approximating $L^\dagger$ by establishing a connection with the inverse of a Laplacian submatrix $L_v$. This submatrix is obtained by removing the $v$-th row and column from the original Laplacian matrix $L$. The key advantage of this connection is that $L_v^{-1}$ exhibits various interesting combinatorial interpretations. We present two innovative interpretations of $L_v^{-1}$ based on spanning trees and loop-erased random walks, which allow us to develop efficient sampling algorithms. Building upon these new theoretical insights, we propose two novel algorithms for efficiently approximating both electrical closeness centrality and Kemeny's constant. We extensively evaluate the performance of our algorithms on five real-life datasets. The results demonstrate that our novel approaches significantly outperform the state-of-the-art methods by several orders of magnitude in terms of both running time and estimation errors for these two graph analysis tasks. To further illustrate the effectiveness of electrical closeness centrality and Kemeny's constant, we present two case studies that showcase the practical applications of these metrics.
翻译:暂无翻译