This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor, to protect the identity information of people from being misused. Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space. The design of RiDDLE has three appealing properties. First, the encryption process is cipher-guided and hence allows diverse anonymization using different passwords. Second, the true identity can only be decrypted with the correct password, otherwise the system will produce another de-identified face to maintain the privacy. Third, both encryption and decryption share an efficient implementation, benefiting from a carefully tailored lightweight encryptor. Comparisons with existing alternatives confirm that our approach accomplishes the de-identification task with better quality, higher diversity, and stronger reversibility. We further demonstrate the effectiveness of RiDDLE in anonymizing videos. Code and models will be made publicly available.
翻译:这项工作展示了RIDDLE, 用于与隐蔽加密器进行翻转和多样化解密的简称, 以保护人们的身份信息不被滥用。 RIDDLE 创建在学习前的 StyleGAN2 生成器上, 能够对隐蔽空间内的面部身份进行加密和解密 。 RIDDLE 的设计有三个吸引人的属性 。 首先, 加密程序是加密制导的, 从而允许使用不同的密码进行多种匿名。 其次, 真正的身份只能用正确的密码解密, 否则这个系统将产生另一个不识别的面孔来维护隐私。 第三, 加密和解密将共享高效的实施, 受益于精心设计的轻量加密。 与现有替代方法的比较证实, 我们的方法能够以更高质量、 更高多样性和更强的可变性来完成解析任务。 我们进一步展示RDDLE在匿名视频中的有效性。 代码和模型将被公布。</s>