We introduce FIFA, a fast approximate inference method for action segmentation and alignment. Unlike previous approaches, FIFA does not rely on expensive dynamic programming for inference. Instead, it uses an approximate differentiable energy function that can be minimized using gradient-descent. FIFA is a general approach that can replace exact inference improving its speed by more than 5 times while maintaining its performance. FIFA is an anytime inference algorithm that provides a better speed vs. accuracy trade-off compared to exact inference. We apply FIFA on top of state-of-the-art approaches for weakly supervised action segmentation and alignment as well as fully supervised action segmentation. FIFA achieves state-of-the-art results on most metrics on two action segmentation datasets.
翻译:我们引入了国际足联,这是一个快速近似推论方法,用于行动分割和调整。与以往的做法不同,国际足联并不依赖昂贵的动态编程进行推理。相反,它使用一种可以使用梯度偏差最小化的大致不同的能源功能。国际足联是一种一般方法,可以取代精确推论,在保持其业绩的同时,其速度提高了5倍以上。国际足联是一种随时可以提供的推理算法,其速度比精确偏差与精确推理速度更高。我们把国际足联应用到最先进的方法之上,用于监管不力的分解和调整以及完全监督的行动分割。国际足联在两种行动分割数据集上取得了最先进的结果。