In contrast to object recognition models, humans do not blindly trust their perception when building representations of the world, instead recruiting metacognition to detect percepts that are unreliable or false, such as when we realize that we mistook one object for another. We propose METAGEN, an unsupervised model that enhances object recognition models through a metacognition. Given noisy output from an object-detection model, METAGEN learns a meta-representation of how its perceptual system works and uses it to infer the objects in the world responsible for the detections. METAGEN achieves this by conditioning its inference on basic principles of objects that even human infants understand (known as Spelke principles: object permanence, cohesion, and spatiotemporal continuity). We test METAGEN on a variety of state-of-the-art object detection neural networks. We find that METAGEN quickly learns an accurate metacognitive representation of the neural network, and that this improves detection accuracy by filling in objects that the detection model missed and removing hallucinated objects. This approach enables generalization to out-of-sample data and outperforms comparison models that lack a metacognition.
翻译:与目标识别模型相反,人类在构建世界形象时不会盲目相信自己的看法,而是在寻找不可靠或虚假的认知时,比如当我们意识到我们误将一个对象误为另一个对象时,就会发现自己的看法。我们提出一个无人监督的模型METAGEN,这个模型通过一种元认知模型增强物体识别模型的模型。鉴于物体探测模型的热量输出,METAGEN学会了一个关于其感知系统如何运作的元代表,并利用它推断出世界上负责探测的物体。METAGEN通过根据甚至人类婴儿都理解的物体基本原则(称为Spelke原则:对象的持久性、凝聚力和广度连续性)进行推断来实现这一目标。我们用各种状态的物体探测天体探测神经网络测试METAGEN。我们发现,METAGEN很快学会了神经网络的准确的元认知代表,通过填充探测模型缺失和删除显性物体的精确度来提高检测的准确度。这个方法使得人们能够进行元化的元化和元化模型的元化。