In this paper, we will perform the parameter-dependent center manifold reduction near the generic and transcritical codimension two Bogdanov-Takens bifurcation in classical delay differential equations (DDEs). Using a generalization of the Lindstedt-Poincar\'e method to approximate the homoclinic solution allows us to initialize the continuation of the homoclinic bifurcation curves emanating from these points. The normal form transformation is derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative. The obtained expressions give explicit formulas, which have been implemented in the freely available bifurcation software package DDE-BifTool. The effectiveness is demonstrated on various models.
翻译:在本文中,我们将在古典延迟差分方程(DDEs)中,在两个Bogdanov-Takens对立法中,在普通和跨临界的对立方形附近,进行依赖参数的中心方块的递减。使用Lindstedt-Poincar\'e的概括方法,以大致接近同质临床溶液,使我们能够开始继续由这些点产生的同质性结裂曲线。正常形式变形来自基于基于Fredholm替代法的两半组(太阳星微积分)的功能分析干扰框架。获得的表达方式提供了明确的公式,这些公式已在可自由获取的双质组合软件包DDE-BifTool中实施。其有效性表现在各种模型上。