For centuries, it has been widely believed that the influence of a small coalition of voters is negligible in a large election. Consequently, there is a large body of literature on characterizing the asymptotic likelihood for an election to be influenced, especially by the manipulation of a single voter, establishing an $O(\frac{1}{\sqrt n})$ upper bound and an $\Omega(\frac{1}{n^{67}})$ lower bound for many commonly studied voting rules under the i.i.d.~uniform distribution, known as Impartial Culture (IC) in social choice, where $n$ is the number is voters. In this paper, we extend previous studies in three aspects: (1) we consider a more general and realistic semi-random model, where a distribution adversary chooses a worst-case distribution and then a data adversary modifies up to $\psi$ portion of the data, (2) we consider many coalitional influence problems, including coalitional manipulation, margin of victory, and various vote controls and bribery, and (3) we consider arbitrary and variable coalition size $B$. Our main theorem provides asymptotically tight bounds on the semi-random likelihood of the existence of a size-$B$ coalition that can successfully influence the election under a wide range of voting rules. Applications of the main theorem and its proof techniques resolve long-standing open questions about the likelihood of coalitional manipulability under IC, by showing that the likelihood is $\Theta\left(\min\left\{\frac{B}{\sqrt n}, 1\right\}\right)$ for many commonly studied voting rules. The main technical contribution is a characterization of the semi-random likelihood for a Poisson multinomial variable (PMV) to be unstable, which we believe to be a general and useful technique with independent interest.
翻译:几个世纪以来,人们广泛认为,小型选民联盟的影响在大规模选举中是微不足道的。因此,有大量文献记载了在社会选择中以美元为选民的ImParty Culture (IC) 来说明选举是否有可能受到影响,特别是操纵单一选民,建立美元(frac{1unsqrt n})的上限和美元(Omega)(frac{1\\\\\\\\\n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\