We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\mathcal{O}(N\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\mathcal{O}(N\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.
翻译:我们开发了一个光谱方法来解决封闭气瓶中的热方程式问题, 实现一个准最佳的 $mathcal{O}( N\log N) 的复杂度和高顺序、 光谱精度。 算法依赖于气瓶的切比谢夫- Chebyshev- Fourier (CCF) 离散化, 这个方法很容易实施, 并且将热方程式分解成一个较小、 稀疏的 Sylvester 方程式的集合。 反过来, 每一个这些方程式都通过在准最佳时间使用交替方向隐含( ADI) 的方法来解决; 总的来说, 这表明热方程式的解析器从$\ mathcal{ O} (N ⁇ 4/3} ) (以前Chebyshev- Fourier 方法) 到 $\mathca{O} (N\\ log N) 。 虽然最近开发了基于图理学的方法来达到相似的计算时间, 我们的Chebyshev 离解使系数变得远快得多的变; 我们通过勾划出一个光谱方法来应用这个方法来演示了这个方法, 解决了 纳维- Stal- slumal- slimalalal- dlasmal- limalmolog- ligal- dal- ligal- sal- dalpalpalpalpalpalpalpalpalpalpalpalpalpalgalgal